Российские ученые работают над сплавами для создания магнитного холодильника

Холодильник на магните: в полете на Марс фреон не потребуется

Российские ученые работают над сплавами для создания магнитного холодильника

Серия сплавов, разработанная российскими учеными, позволит создать холодильник, который будет работать без использования токсичного фреона.

В состав этих сплавов входят редкоземельные металлы, которые активно выделяют или поглощают тепло под воздействием магнитного поля, — гадолиний, тербий, диспрозий, гольмий.

Созданные с их применением магнитные холодильники подойдут для использования как в космосе, так и в бытовых условиях.

Замена фреону

Способность кристаллической решетки некоторых веществ меняться под воздействием магнитного поля, при этом выделяя или поглощая тепло, вдохновила ученых разных стран на поиск сплавов, способных заменить токсичный фреон, применяемый в обычных холодильниках. Осталось найти сплав, в котором так называемый магнитокалорический эффект (изменение температуры магнитного вещества при изменении внешнего магнитного поля) был бы максимально выражен.

В ходе совместных исследований физики Санкт-Петербургского политехнического университета Петра Великого (СПбПУ), МГУ им. М.В.

Ломоносова и Института металлургии и материаловедения РАН (ИМЕТ РАН) определили несколько материалов, обладающих наиболее выраженным магнитокалорическим эффектом.

Это сплавы, включающие несколько редкоземельных металлов: гадолиний, тербий, диспрозий, гольмий и кобальт, в некоторых случаях с небольшим замещением на алюминий.

— Мы исследовали кристаллическую структуру данной системы материалов и научились управлять ее свойствами. С помощью подбора определенной комбинации редкоземельных металлов удалось получить серию сплавов, которые могут быть весьма эффективными для магнитного охлаждения, — пояснил ректор СПбПУ Андрей Рудской, участвовавший в исследовании как ученый-материаловед.

Так как редкоземельные металлы и кобальт довольно дороги (их цена сопоставима со стоимостью серебра), исследователи нашли способы удешевления сплавов.

— Мы предложили ввести в состав сплавов алюминий при сохранении и даже улучшении их свойств, — рассказал завкафедрой «Физическая электроника» СПбПУ Алексей Филимонов.

— Поиск подходящих материалов велся с 1960-х годов методом проб и ошибок.

Блуждание по тупикам закончилось после того, как удалось построить полную модель явления — создать теорию, адекватно описывающую магнитокалорические процессы в различных материалах.

Колесо и магнит

Принцип действия магнитного холодильника прост: за счет воздействия магнитного поля изменяется симметрия кристаллической решетки, в результате происходит высвобождение или поглощение тепла. В зависимости от того, какое магнитное поле и в каком направлении прикладывается, можно вызвать либо интенсивный разогрев, либо сильное охлаждение.

Один из вариантов механики работы магнитного холодильника — использование вращающейся конструкции. Она состоит из колеса, содержащего сегменты с порошком сплава, а также мощного постоянного магнита. Колесо прокручивается через рабочий зазор, в котором сконцентрировано магнитное поле.

При вхождении сплава в нем возникает магнитокалорический эффект — он нагревается. Тепло отводится теплообменником, охлаждаемым водой. Когда сплав выходит из зоны поля, возникает магнитокалорический эффект противоположного знака. В результате материал охлаждается, понижая температуру в теплообменнике с циркулирующим в нем вторым потоком воды.

Этот поток и используется для охлаждения холодильной камеры магнитного холодильника.

— Это технологии будущего, — уверен Андрей Рудской. — Ученым предстоит большая работа по повышению эффективности данных материалов. Необходимо подтвердить уровень эксплуатационной надежности материала — его стабильности и безотказности. Разработки в области создания магнитного холодильника также ведут исследовательские центры в США, Японии, Германии, Франции, Италии.

С холодильником на Марс

С начала космической эры и по сей день космонавты не используют холодильники в привычном понимании — для охлаждения продуктов.

— Холодильные установки в российском сегменте МКС есть, но они используются не для хранения продуктов, а для охлаждения образцов, используемых в научных экспериментах, — рассказал летчик-космонавт, Герой России Андрей Борисенко.

Установки на фреоне в космосе использовать слишком рискованно, так как при утечке газа в замкнутом пространстве очистить от него атмосферу на станции будет сложно. Затрудняет работу холодильных установок также отсутствие гравитации и конвекции.

А вот для магнитного холодильника ориентация в пространстве не важна, газы в нем не используются.

По словам Андрея Борисенко, важно также учитывать энергопотребление прибора и его возможное влияние на работу жизненно важных систем управления космическим кораблем.

Космонавт признался, что холодильник на орбите нужен для повышения комфорта в полете. В настоящее время космонавты работают на орбите не более полутора лет.

А при полетах в дальний космос сроки резко возрастут, а вместе с ними и требования к комфорту пребывания человека в космосе.

Широко распространенные сегодня холодильные установки, которые работают на принципах сжатия-расширения фреона, имеют существенные недостатки — большую массу и габариты при небольшом КПД (не более 30%). В полет, например на Марс, где важен каждый грамм груза, брать такой холодильник накладно. У магнитных холодильников КПД намного больше.

— Экономичность и эффективность магнитных холодильников в условиях комнатной температуры может достигать 85%, — считает Галина Политова, кандидат физико-математических наук, старший научный сотрудник Института металлургии и материаловедения им. А.А. Байкова РАН (ИМЕТ РАН).

В числе достоинств магнитных холодильников другая участница исследований — Ирина Терешина, доктор физико-математических наук, ведущий научный сотрудник кафедры «Физики твердого тела» Физического факультета МГУ им. М.В.

Ломоносова назвала удобство и простоту эксплуатации — компактность, бесшумность в работе, независимость ориентации в пространстве, что важно для применения в космосе и в быту.

А также износостойкость благодаря небольшому количеству подвижных деталей и работе на низких частотах.

Среди недостатков Ирина Терешина и Галина Политова отметили неоднородность распределения температуры, необходимость экранировать (изолировать с помощью непроницаемых для магнитного поля материалов) источник магнитного поля и высокую цену твердотельных хладагентов (гадолиний, тербий).

Источник: https://iz.ru/850627/nataliia-mikhalchenko/kholodilnik-na-magnite-v-polete-na-mars-freon-ne-potrebuetsia

Российские ученые изобрели магнитный холодильник, работающий без фреона

Российские ученые работают над сплавами для создания магнитного холодильника

Одним из главных бытовых приборов в наших домах или квартирах является холодильник. Он продлевает жизнь продуктов и позволяет нам хранить их в свежем виде. Однако такие устройства потребляют достаточного много электроэнергии.

По оценке специалистов, подобное оборудование, включая бытовое, промышленное и автомобильное тратит до 10% всей электроэнергии в мире. Российским ученым возможно удалось сделать прорыв в данной отрасли. Они изобрели энергоэффективный магнитный холодильник без использования фреона.

Что это за чудо техники и как удалось его сделать, давайте разбираться.

Научно-исследовательский коллектив специалистов в области физики и инженеров НИТУ «МИСиС» совместно с сотрудниками Тверского государственного университета предложили инновационную новую технологию охлаждения. Они смогли добиться функционирования мини-холодильника, в основе работы которого лежит магнитное поле.

В обычном холодильнике процесс охлаждения происходит, благодаря испарению фреона или хладона, переходящего в газообразное состояние. Изобретение молодых российских ученых работает по другому принципу. В основе лежит магнитокалорический эффект.

Он позволяет изменять температуру магнитного материала путем намагничивания или размагничивания его.

Как работает магнитный холодильник

На практике данный процесс выглядит достаточно просто. При внесении металлического бруска в магнитное поле происходит его нагрев, а при извлечении – охлаждение.

Суть заключается в том, чтобы данная процедура происходила достаточно быстро и имела цикличность. Так разница в температуре будет сохраняться. Команда ученых уже сконструировала первый магнитный холодильник, который является прототипом и проходит испытания.

Данное устройство имеет небольшие размеры, однако способно охлаждать холодильник большого объема.

Рекомендую ознакомиться со статьей моего коллеги «Мусорная реформа: снижение тарифов и возможное введение нового налога». Прочесть её можно по этой ссылке.

Разработчик проекта и по совместительству старший научный сотрудник кафедры Функциональных наносистем и высокотемпературных материалов НИТУ „МИСиС“ Дмитрий Карпенков пояснил, что так как плотность сплава металла значительно больше, чем у газа, то показатель запасенной энтропии выше.

Это позволяет достичь большей мощности охлаждения, чем в стандартной холодильной системе. Именно благодаря этому фактору, новое изобретение является энергоэффективным и превышает показатель КПД на 30-40% по сравнению с газокомпрессорными образцами.

Суть нового устройства заключается в том, что оно способно обеспечить максимальный резонанс в температуре двух теплообменников – 9 градусов Цельсия. Одним из основных отличий данного приспособления является то, что рабочее тело может выступать в роли хладагента и нагнетательного насоса одновременно.

Главным преимуществом изобретения станет возможность исключить из конструкции охлаждающих систем насосы. Они несут дополнительную тепловую нагрузку для холодильника.

Вторым решением, которое делает устройство поистине уникальным, является разграничение потоков между горячим и холодным теплообменником. При этом основная рабочая часть (металлический брусок) может спокойно и последовательно переходить из одного потока в другой, находясь в это время в намагниченном или размагниченном состоянии.

Дмитрий Карпенков сообщил, что проведенные исследования показали, что использование каскадных циклов с использованием магнитного охлаждения позволяют увеличить диапазон охлаждения на 80%.

Во время экспериментов и тестирования магнитного прототипа, исследователи установили, что максимальный показатель теплоты, который может отвести устройство, составляет 405 Дж. Это соответствует значению максимального мощности охлаждения в 45 Вт. Научная группа сообщила, что в настоящее время исследования и испытания продолжаются. Об их результатах будет сообщено отдельно.

В чем перспектива

Данное изобретение может стать настоящим прорывом в области охлаждающего оборудования. Ведь исключение из процесса охлаждения фреона и насосов позволит значительно уменьшить размер самого агрегата и упростить обслуживание подобных устройств.

Магнитный холодильник может использоваться не только в бытовых приборах, кондиционерах и тепловых насосах. Если кто еще не читал нашу статью про данное оборудование, то всем рекомендую ознакомиться с ней по вот этой ссылке. Данное изобретение может применяться в автомобилях, различных промышленных агрегатах и многом другом.

Оно значительно увеличит энергоэффективность подобных систем и позволит экономить на электричестве.

А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!

Надеюсь, статья была понятна и полезна. Мне очень приятно, что отечественные молодые ученые помогают развиваться мировой науке и современным технологиям. С нетерпением будем ждать окончания испытаний и начала серийного производства магнитного холодильника. Как по мне, то это отличный вариант замены старого.

Мне нравится!18 Мне не нравится!0

Надеюсь мои статьи будут вам полезны, ведь я стараюсь передать весь имеющийся опыт и знания. С радостью отвечу на все возникшие вопросы и могу дать дельный совет. Буду ждать ваших отзывов, мнений и предложений.

Источник: https://www.allremont59.ru/news/rossijskie-uchenye-izobreli-magnitnyj-holodilnik-rabotayushhij-bez-freona.html

Российские изобретения: магнитный холодильник, порошок невидимка, обратный сэндвич и сверхтвердые материалы

Российские ученые работают над сплавами для создания магнитного холодильника

Разработка российских ученых позволит создать холодильник, в котором не будет использоваться токсичный фреон. Аппарат будет генерировать холод исключительно благодаря воздействию магнитного поля на сплав из редкоземельных металлов.

scind

Под воздействием магнитного поля на полученный сплав происходит изменение кристаллической решетки последнего. Процесс при этом сопровождается поглощением или высвобождением тепла. Все зависит от того, какое прикладывается магнитное поле и в каком направлении.

Идею разработали сотрудники СПбПУ, МГУ им. М.В. Ломоносова и Института металлургии и материаловедения РАН.

В томске получили порошок-невидимку…

Уникальный маскировочный материал на основе оксида железа изобрели в Томском политехе. Порошок способен поглощать электромагнитное излучение в широком диапазоне, а значит может пригодиться и военным, и гражданским специалистам.

tvzvezda

…и научились получать сверхтвердые материалы на открытом воздухе

Ученые Томского политехнического университета разработали установку для получения сверхтвердых материалов на основе соединений углерода и титана, которая работает на открытом воздухе, а не в вакууме, что значительно удешевляет процесс, так как не требует специальных условий и дорогостоящего оборудования.

Карбид титана отличается особой прочностью и устойчивостью к высоким температурам. Его в частности используют для изготовления тиглей, емкостей для нагрева, обжига или плавления различных материалов в металлургии.

Помимо карбида титана ученые также получили образцы карбида кремния и карбида бора, которые применяют для создания компонентов силовой электроники, изделий для атомной промышленности, керамических бронепластин и т.д.

Питерские ученые создали соединение металлов в виде «обратного сэндвича»

Ученые Санкт-Петербургского государственного университета и Института физической химии и электрохимии РАН создали соединение металлов, напоминающее по структуре обратный «сэндвич».

Во второй половине двадцатого века английские химики Джон Уилкинсон и Эмиль Фишер получили Нобелевскую премию по химии за изучение так называемых «сэндвичевых» соединений, к которым относится, например, ферроцен.

Его молекулы состоят из двух компонентов. Первый — плоские отрицательно заряженные органические фрагменты, состоящие из углерода и водорода.

Второй компонент — ион металла железа с положительным зарядом — зажат между органическими фрагментами, как начинка между двумя кусками хлеба.

«Нам удалось собрать системы, где уже отрицательный заряд на металле притягивается к положительному заряду на органических плоских фрагментах. Из-за обратного расположения зарядов и было решено назвать эти системы «обратными сэндвичами».

Мы собираемся продолжить изучать взаимодействия с участием атомов металлов, на которых сосредоточен отрицательный заряд — в частности, многие соединения металлов обладают полезными фотофизическими свойствами, например, умением светиться — люминесценцией.

Мы хотим понять, как включение соединения металла в состав обратных сэндвичей влияют на такие свойства», — заявил Даниил Иванов, ассистент кафедры физической органической химии института химии СПбГУ.

Добавим, что в Советском Союзе больше всего лауреатов Нобелевской премии было именно по физике — 11 человек. В их числе Лев Ландау, Петр Капица, Алексей Абрикосов и Виталий Гинзбург.

В 2010 году уроженец Нижнего Тагила Константин Новоселов получил Нобелевскую премию за новаторские эксперименты по исследованию графена.
“,”author”:”Илья Каукин”,”date_published”:”2019-04-03T07:37:34.014Z”,”lead_image_url”:”https://miro.medium.com/max/900/1*OcGzIp5oPCkgna1klK7Ykw.jpeg”,”dek”:null,”next_page_url”:null,”url”:”https://medium.com/profholod/%D1%80%D0%BE%D1%81%D1%81%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B5-%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B5%D1%82%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9-%D1%85%D0%BE%D0%BB%D0%BE%D0%B4%D0%B8%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA-%D0%BF%D0%BE%D1%80%D0%BE%D1%88%D0%BE%D0%BA-%D0%BD%D0%B5%D0%B2%D0%B8%D0%B4%D0%B8%D0%BC%D0%BA%D0%B0-%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B9-%D1%81%D1%8D%D0%BD%D0%B4%D0%B2%D0%B8%D1%87-%D0%B8-%D1%81%D0%B2%D0%B5%D1%80%D1%85%D1%82%D0%B2%D0%B5%D1%80%D0%B4%D1%8B%D0%B5-ae451063d1c0″,”domain”:”medium.com”,”excerpt”:”Российские ученые разработали «магнитный» холодильник”,”word_count”:419,”direction”:”ltr”,”total_pages”:1,”rendered_pages”:1}

Источник: https://medium.com/profholod/%D1%80%D0%BE%D1%81%D1%81%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B5-%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B5%D1%82%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9-%D1%85%D0%BE%D0%BB%D0%BE%D0%B4%D0%B8%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA-%D0%BF%D0%BE%D1%80%D0%BE%D1%88%D0%BE%D0%BA-%D0%BD%D0%B5%D0%B2%D0%B8%D0%B4%D0%B8%D0%BC%D0%BA%D0%B0-%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B9-%D1%81%D1%8D%D0%BD%D0%B4%D0%B2%D0%B8%D1%87-%D0%B8-%D1%81%D0%B2%D0%B5%D1%80%D1%85%D1%82%D0%B2%D0%B5%D1%80%D0%B4%D1%8B%D0%B5-ae451063d1c0

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.